Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Interfacial stability of an indium tin oxide thin film deposited on Si and Si0.85Ge0.15

Identifieur interne : 011C56 ( Main/Repository ); précédent : 011C55; suivant : 011C57

Interfacial stability of an indium tin oxide thin film deposited on Si and Si0.85Ge0.15

Auteurs : RBID : Pascal:00-0376803

Descripteurs français

English descriptors

Abstract

The stability of the interface formed by depositing indium tin oxide (ITO) thin films on Si and Si0.85Ge0.15 substrates was investigated. Cross-sectional transmission electron microscopy combined with Fourier-transform infrared spectroscopy, energy dispersive x-ray analysis, x-ray diffraction, and capacitance-voltage measurements were used to characterize the interface immediately after rf magnetron sputter deposition as a function of annealing time in ultrahigh purity (UHP) N2 at 785°C for 10-80 min. The In-Si-O2 ternary phase equilibrium diagram was calculated to predict the possible product layer sequences. A 2-nm-thick interfacial amorphous silicon oxide, associated with ion implantation intermixing, is present in the ITO/Si as-deposited sample, while a 3-7-nm-thick amorphous oxide interlayer is observed in the ITO/Si0.85Ge0.15 sample. During annealing in UHP N2, the interlayer oxide growth rate follows the initial stage of conventional oxidation. In the ITO/Si system, experimental observations revealed a preference for the displacement reaction limited by the diffusivity of Si through the SiO2 layer, i.e., Si/SiO2/In/In2O3. This solid-state oxidation process has the potential for in situ fabrication of ITO metallized SiO2 gates in Si thin film transistor applications. On the other hand, the more complicated quaternary In-Si-Ge-O2 system reveals two distinct reaction layer morphologies, suggesting that the presence of Ge strongly influences the stability of the interfacial thermodynamics and kinetics. © 2000 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:00-0376803

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Interfacial stability of an indium tin oxide thin film deposited on Si and Si
<sub>0.85</sub>
Ge
<sub>0.15</sub>
</title>
<author>
<name sortKey="Ow Yang, Cleva W" uniqKey="Ow Yang C">Cleva W. Ow Yang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Max-Planck-Institut fur Metallforschung, Seestrasse 92, 70174 Stuttgart, Germany</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max-Planck-Institut fur Metallforschung, Seestrasse 92, 70174 Stuttgart</wicri:regionArea>
<wicri:noRegion>70174 Stuttgart</wicri:noRegion>
<wicri:noRegion>70174 Stuttgart</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Aoyama Gakuin University, College of Science and Engineering, 6-16-1 Chitosedai, Setagayaku, Tokyo, 157-8572, Japan</s1>
</inist:fA14>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Aoyama Gakuin University, College of Science and Engineering, 6-16-1 Chitosedai, Setagayaku, Tokyo, 157-8572</wicri:regionArea>
<wicri:noRegion>157-8572</wicri:noRegion>
</affiliation>
<affiliation wicri:level="2">
<inist:fA14 i1="03">
<s1>Brown University, Division of Engineering, Box D, Providence, Rhode Island 02912</s1>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Rhode Island</region>
</placeName>
<wicri:cityArea>Brown University, Division of Engineering, Box D, Providence</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Shigesato, Yuzo" uniqKey="Shigesato Y">Yuzo Shigesato</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Max-Planck-Institut fur Metallforschung, Seestrasse 92, 70174 Stuttgart, Germany</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max-Planck-Institut fur Metallforschung, Seestrasse 92, 70174 Stuttgart</wicri:regionArea>
<wicri:noRegion>70174 Stuttgart</wicri:noRegion>
<wicri:noRegion>70174 Stuttgart</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Paine, David C" uniqKey="Paine D">David C. Paine</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Max-Planck-Institut fur Metallforschung, Seestrasse 92, 70174 Stuttgart, Germany</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max-Planck-Institut fur Metallforschung, Seestrasse 92, 70174 Stuttgart</wicri:regionArea>
<wicri:noRegion>70174 Stuttgart</wicri:noRegion>
<wicri:noRegion>70174 Stuttgart</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">00-0376803</idno>
<date when="2000-09-15">2000-09-15</date>
<idno type="stanalyst">PASCAL 00-0376803 AIP</idno>
<idno type="RBID">Pascal:00-0376803</idno>
<idno type="wicri:Area/Main/Corpus">012905</idno>
<idno type="wicri:Area/Main/Repository">011C56</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0021-8979</idno>
<title level="j" type="abbreviated">J. appl. phys.</title>
<title level="j" type="main">Journal of applied physics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Annealing</term>
<term>Chemical interdiffusion</term>
<term>Elemental semiconductors</term>
<term>Experimental study</term>
<term>Fourier transform spectra</term>
<term>Ge-Si alloys</term>
<term>Indium compounds</term>
<term>Infrared spectra</term>
<term>Ion implantation</term>
<term>Metallizing</term>
<term>Oxidation</term>
<term>Phase diagrams</term>
<term>Semiconductor materials</term>
<term>Silicon</term>
<term>Sputter deposition</term>
<term>Sputtered coatings</term>
<term>TEM</term>
<term>X-ray chemical analysis</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>8115C</term>
<term>7866N</term>
<term>7830H</term>
<term>7280C</term>
<term>7361C</term>
<term>8165M</term>
<term>6855</term>
<term>6835F</term>
<term>6172T</term>
<term>6180J</term>
<term>6182F</term>
<term>8280E</term>
<term>6172C</term>
<term>Etude expérimentale</term>
<term>Silicium</term>
<term>Semiconducteur élémentaire</term>
<term>Alliage Ge Si</term>
<term>Matériau semiconducteur</term>
<term>Indium composé</term>
<term>Dépôt pulvérisation</term>
<term>Revêtement pulvérisation</term>
<term>Diffusion mutuelle chimique</term>
<term>Implantation ion</term>
<term>TEM</term>
<term>Analyse chimique RX</term>
<term>Spectre transformée Fourier</term>
<term>Spectre IR</term>
<term>Diffraction RX</term>
<term>Recuit</term>
<term>Diagramme phase</term>
<term>Oxydation</term>
<term>Métallisation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The stability of the interface formed by depositing indium tin oxide (ITO) thin films on Si and Si
<sub>0.85</sub>
Ge
<sub>0.15</sub>
substrates was investigated. Cross-sectional transmission electron microscopy combined with Fourier-transform infrared spectroscopy, energy dispersive x-ray analysis, x-ray diffraction, and capacitance-voltage measurements were used to characterize the interface immediately after rf magnetron sputter deposition as a function of annealing time in ultrahigh purity (UHP) N
<sub>2</sub>
at 785°C for 10-80 min. The In-Si-O
<sub>2</sub>
ternary phase equilibrium diagram was calculated to predict the possible product layer sequences. A 2-nm-thick interfacial amorphous silicon oxide, associated with ion implantation intermixing, is present in the ITO/Si as-deposited sample, while a 3-7-nm-thick amorphous oxide interlayer is observed in the ITO/Si
<sub>0.85</sub>
Ge
<sub>0.15</sub>
sample. During annealing in UHP N
<sub>2</sub>
, the interlayer oxide growth rate follows the initial stage of conventional oxidation. In the ITO/Si system, experimental observations revealed a preference for the displacement reaction limited by the diffusivity of Si through the SiO
<sub>2</sub>
layer, i.e., Si/SiO
<sub>2</sub>
/In/In
<sub>2</sub>
O
<sub>3</sub>
. This solid-state oxidation process has the potential for in situ fabrication of ITO metallized SiO
<sub>2</sub>
gates in Si thin film transistor applications. On the other hand, the more complicated quaternary In-Si-Ge-O
<sub>2</sub>
system reveals two distinct reaction layer morphologies, suggesting that the presence of Ge strongly influences the stability of the interfacial thermodynamics and kinetics. © 2000 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0021-8979</s0>
</fA01>
<fA02 i1="01">
<s0>JAPIAU</s0>
</fA02>
<fA03 i2="1">
<s0>J. appl. phys.</s0>
</fA03>
<fA05>
<s2>88</s2>
</fA05>
<fA06>
<s2>6</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Interfacial stability of an indium tin oxide thin film deposited on Si and Si
<sub>0.85</sub>
Ge
<sub>0.15</sub>
</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>OW YANG (Cleva W.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SHIGESATO (Yuzo)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>PAINE (David C.)</s1>
</fA11>
<fA14 i1="01">
<s1>Max-Planck-Institut fur Metallforschung, Seestrasse 92, 70174 Stuttgart, Germany</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Aoyama Gakuin University, College of Science and Engineering, 6-16-1 Chitosedai, Setagayaku, Tokyo, 157-8572, Japan</s1>
</fA14>
<fA14 i1="03">
<s1>Brown University, Division of Engineering, Box D, Providence, Rhode Island 02912</s1>
</fA14>
<fA20>
<s1>3717-3724</s1>
</fA20>
<fA21>
<s1>2000-09-15</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>126</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2000 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>00-0376803</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of applied physics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The stability of the interface formed by depositing indium tin oxide (ITO) thin films on Si and Si
<sub>0.85</sub>
Ge
<sub>0.15</sub>
substrates was investigated. Cross-sectional transmission electron microscopy combined with Fourier-transform infrared spectroscopy, energy dispersive x-ray analysis, x-ray diffraction, and capacitance-voltage measurements were used to characterize the interface immediately after rf magnetron sputter deposition as a function of annealing time in ultrahigh purity (UHP) N
<sub>2</sub>
at 785°C for 10-80 min. The In-Si-O
<sub>2</sub>
ternary phase equilibrium diagram was calculated to predict the possible product layer sequences. A 2-nm-thick interfacial amorphous silicon oxide, associated with ion implantation intermixing, is present in the ITO/Si as-deposited sample, while a 3-7-nm-thick amorphous oxide interlayer is observed in the ITO/Si
<sub>0.85</sub>
Ge
<sub>0.15</sub>
sample. During annealing in UHP N
<sub>2</sub>
, the interlayer oxide growth rate follows the initial stage of conventional oxidation. In the ITO/Si system, experimental observations revealed a preference for the displacement reaction limited by the diffusivity of Si through the SiO
<sub>2</sub>
layer, i.e., Si/SiO
<sub>2</sub>
/In/In
<sub>2</sub>
O
<sub>3</sub>
. This solid-state oxidation process has the potential for in situ fabrication of ITO metallized SiO
<sub>2</sub>
gates in Si thin film transistor applications. On the other hand, the more complicated quaternary In-Si-Ge-O
<sub>2</sub>
system reveals two distinct reaction layer morphologies, suggesting that the presence of Ge strongly influences the stability of the interfacial thermodynamics and kinetics. © 2000 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15C</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70H66N</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H30H</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70B80C</s0>
</fC02>
<fC02 i1="05" i2="3">
<s0>001B70C61C</s0>
</fC02>
<fC02 i1="06" i2="3">
<s0>001B80A65</s0>
</fC02>
<fC02 i1="07" i2="3">
<s0>001B60H55</s0>
</fC02>
<fC02 i1="08" i2="3">
<s0>001B60H35F</s0>
</fC02>
<fC02 i1="09" i2="3">
<s0>001B60A72T</s0>
</fC02>
<fC02 i1="10" i2="3">
<s0>001B60A80J</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>8115C</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>7866N</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>7830H</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>7280C</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>7361C</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>8165M</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>6855</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>6835F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>6172T</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>6180J</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>6182F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>8280E</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>6172C</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Semiconducteur élémentaire</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Elemental semiconductors</s0>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Alliage Ge Si</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Ge-Si alloys</s0>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Matériau semiconducteur</s0>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Dépôt pulvérisation</s0>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Sputter deposition</s0>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Revêtement pulvérisation</s0>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Sputtered coatings</s0>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Diffusion mutuelle chimique</s0>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Chemical interdiffusion</s0>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Implantation ion</s0>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Ion implantation</s0>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>TEM</s0>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>TEM</s0>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Analyse chimique RX</s0>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>X-ray chemical analysis</s0>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Spectre transformée Fourier</s0>
</fC03>
<fC03 i1="26" i2="3" l="ENG">
<s0>Fourier transform spectra</s0>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>Spectre IR</s0>
</fC03>
<fC03 i1="27" i2="3" l="ENG">
<s0>Infrared spectra</s0>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>Diffraction RX</s0>
</fC03>
<fC03 i1="28" i2="3" l="ENG">
<s0>XRD</s0>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>Recuit</s0>
</fC03>
<fC03 i1="29" i2="3" l="ENG">
<s0>Annealing</s0>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>Diagramme phase</s0>
</fC03>
<fC03 i1="30" i2="3" l="ENG">
<s0>Phase diagrams</s0>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>Oxydation</s0>
</fC03>
<fC03 i1="31" i2="3" l="ENG">
<s0>Oxidation</s0>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>Métallisation</s0>
</fC03>
<fC03 i1="32" i2="3" l="ENG">
<s0>Metallizing</s0>
</fC03>
<fN21>
<s1>255</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0036M000383</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 011C56 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 011C56 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:00-0376803
   |texte=   Interfacial stability of an indium tin oxide thin film deposited on Si and Si0.85Ge0.15
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024